Weak measurements and metrology

Nicolas Brunner

Collaborators

Christoph Simon (Calgary)

And also:

Antonio Acin (Barcelona)
Michael Berry, Sandu Popescu (Bristol)
Eugene Polzik (Copenhagen)
Nicolas Gisin, Matthieu Legre, Daniel Collins, Mark Wegmuller (Geneva)
Pragya Shukla (IIT)
Valerio Scarani (Singapore)

Weak measurements

Discovered during exotic research on foundations of QM

Aharonov-Albert-Vaidman PRL 1988

Explore foundations of QM

Hardy paradox Aharonov et al. PLA 2002Observe wavefunction Lundeen et al. Nature 2011, Steinberg et al. Science 2011

- > Cavity QED experiments Wiseman PRA 2002
- > **Telecom optics** Brunner et al. PRL 2003
- > Superluminal propagation Brunner et al. PRL 2004
- > Solid-state physics Williams-Jordan PRL 2008

WM and Metrology

QUANTUM INSPIRED METROLOGY

- > Spin Hall effect of light (Hosten & Kwiat, Science 2008)
- > Small beam deflections ~15fm (Dixon, Starling, Jordan, Howell PRL 2009)

HERE: SMALL PHASE SHIFTS, MAGNETOMETRY

What is a weak measurement?

Standard picture of Q measurement (von Neumann)

$$|\psi\rangle_S|g_0\rangle_P = (\alpha|\uparrow\rangle_S + \beta|\downarrow\rangle_S)\,|g_0\rangle_P \rightarrow \alpha|\uparrow\rangle_S|g_+\rangle_P + \beta|\downarrow\rangle_S|g_-\rangle_P$$

Pointer read-out → Collapse of system / Full information

What is a weak measurement?

Pointer read-out → no disturbance / little information

Example - Birefringence

Coupling between polarization and temporal mode

Post-selection - Weak value

1. Pre-selection $|\psi
angle = lpha |H
angle + eta |V
angle$

Post-selection - Weak value

- 1. Pre-selection $|\psi\rangle=\alpha|H\rangle+\beta|V\rangle$
- 2. Weak meas. $U=e^{-i\tau\omega\sigma_z}$ Shift operator
- 3. Post-selection $|\phi
 angle = \mu |H
 angle + \nu |V
 angle$

Post-selection - Weak value

- 1. Pre-selection $|\psi\rangle=\alpha|H\rangle+\beta|V\rangle$
- 2. Weak meas. $U = e^{-i\tau\omega\sigma_z}$ Shift operator
- 3. Post-selection $|\phi
 angle = \mu |H
 angle + \nu |V
 angle$

Output state

$$|g_{out}\rangle = \langle \phi | e^{-i\tau\omega\sigma_z} | g(t) \rangle | \psi \rangle$$

 $\simeq \langle \phi | \psi \rangle e^{-i\tau A_w \omega} | g(t) \rangle$

Amplification of pointer shift

$$A_w = \frac{\langle \phi | \sigma_z | \psi \rangle}{\langle \phi | \psi \rangle}$$

Weak value

Fastlight & Neutrinos

Desktop experiment

Brunner, Scarani, Legre, Wegmuller, Gisin, PRL 2004

NEUTRINOS OSCILLATIONS ≈ BIREFRINGENCE

SUPERLUMINAL NEUTRINOS AT OPERA?

PROBABLY NOT

Berry, Brunner, Popescu, Shukla, J Phys A 2011

Metrology

1. DIRECT OBSERVATION

2. WEAK MEASUREMENT SCHEME

WM scheme

Advantage: Signal is amplified by the weak value

Amplification
$$A_{\scriptscriptstyle W} = \frac{\langle \phi | A | \psi \rangle}{\langle \phi | \psi \rangle}$$

Price to pay: intensity of the signal is reduced

Prob. success
$$p \simeq rac{1}{A_w^2}$$

Useful for transverse effects

1. Spin Hall effect of light (Hosten-Kwiat 2008) Effect ~ Å

2. Small beam displacement (Dixon et al. PRL 2009) Effect ~15fm

What about longitudinal effects?

Measuring small phase shifts

Small phase shifts stable in time

<u>Limiting factor:</u> alignment errors (not photon statistics)

Compare 3 techniques

- a) Weak meas. Real weak value
- b) Weak meas. Imaginary weak value
- c) Standard interferometry

Different operating point of IF and detection

a) Weak Meas. Real weak value

IF: Dark port

Det: Time

Angle misalignement $\epsilon\colon P_{error}\simeq\epsilon^2 \longrightarrow p>\epsilon^2$

Resolution limit:

b) Weak Meas. Imaginary weak value

Signal:
$$\delta\omega\simeq \tau/(\sigma^2\sqrt{p})$$
 \longrightarrow $\delta\omega>\Delta\omega$

Angle misalignement
$$\epsilon$$
: $P_{error} \simeq \epsilon^2 \longrightarrow p > \epsilon^2$

Resolution limit:
$$au > \epsilon \sigma^2 \Delta \omega$$

c) Standard Interferometry

Signal:
$$|I_1-I_2|\simeq 2N\omega au$$

Angle misalignement ϵ : $P_{error} \simeq \epsilon \longrightarrow \omega \tau > \epsilon$

Resolution limit:
$$au > rac{\epsilon}{\omega}$$

Comparison

Resolution limit

In practice

a) Real weak value

$$au > \epsilon \Delta t$$

$$\Delta t > 10 \text{ ps}$$

Gol'tsman et al. (2005)

c) Interferometry

$$au > rac{\epsilon}{\omega}$$

$$1/\omega \sim 1 \text{ fs}$$

Optical frequencies

b) Imag. weak value

$$\tau > \epsilon \sigma^2 \Delta \omega / 2$$

$$\tau > \epsilon \sigma^2 \Delta \omega / 2$$
 $\sigma^2 \Delta \omega = 0.5$ as

Perspectives

PRACTICAL IMPLEMENTATION?

Roberts et al. Nature Phot 2009

OTHER METROLOGY APPLICATIONS?
NASA? LIGO?

More

Weak measurements amplification

Noiseless amplification of coherent states

Ralph-Lund 2009 Exp : Pryde, Bellini, Leuchs

- Based on post-selection
- > Heralded
- Achieve something that would be impossible deterministically

Brunner, Polzik, Simon PRA 2011

Heralded amplification of rotations in spin ensembles

Thank you